NETIRON XMR 4000, 8000, 16000, 32000
IPV4/IPV6/MPLS MULTI-SERVICE ROUTERS

- 4-, 8-, 16-, and 32-slot high-end IPv4/IPV6/MPLS multi-service routers
- Terabit-scale architecture offering up to 3 Tbps data capacity and 2 Bpps per system
- Highly resilient architecture with redundant management modules, switch fabrics, power supplies, fans, and hitless failover
- Up to 128 10 Gigabit Ethernet / 640 Gigabit Ethernet ports per system, and up to 256 10 Gigabit Ethernet / 1,280 Gigabit Ethernet ports in a standard 7-foot rack

- Wire-speed IPv4, IPv6, and MPLS routing featuring Foundry’s unique FDR technology
- Comprehensive suite of IPv4 and IPv6 unicast and multicast routing protocols
- High-capacity MPLS L3/L2 VPNs and IP over MPLS routing
- Enables Virtual Routing in non-MPLS environments via Multi-VRF
- SONET/SDH interoperability with 10 Gigabit Ethernet WAN PHY

Overview

Today’s Service Providers face a number of challenges that require a new breed of solutions in order to ensure successful and profitable operation. Today’s Service Providers operate in an environment of fierce competition that continues to drive service pricing down. A smooth introduction of new, reliable, and scalable services poses a challenge to many Service Providers, yet, is crucial to expanding the subscriber base, and improving subscriber retention. Adding to these challenges is an exponential growth trend in Internet traffic that continues to erode network capacities. Ensuring and increasing profitability are key goals for any Service Provider, which presents the additional challenges of controlling Capital Expenditures (CapEx) and Operational Expenditures (OpEx).

Foundry’s NetIron XMR Series of routers are built to effectively address all these hurdles by offering the state-of-the-art in hardware and software design. The NetIron XMR Series comprises the industry’s most powerful, high density IPv4/IPv6/MPLS multi-service routers. The series is based on a superior terabit-scale architecture that includes Foundry’s cutting-edge 5th generation network processors. The NetIron XMR Series offers highly versatile, cost-efficient solutions for Internet routing, Metro core, large scale IP backbones, and IP carrier’s carrier transport, thereby enabling the deployment of scalable, high value, and profitable services.

The NetIron XMR Series includes the 4-slot NetIron XMR 4000 (4 RU), 8-slot NetIron XMR 8000 (7 RU), the 16-slot NetIron XMR 16000 (14 RU), and the 32-slot NetIron XMR 32000 (21 RU). The series offers industry-leading port capacity and density with up to 128 10 Gigabit
NETIRON XMR 4000, 8000, 16000, 32000
IPV4/IPV6/MPLS MULTI-SERVICE ROUTERS

Ethernet/640 Gigabit Ethernet ports per system, and up to 256 10 Gigabit Ethernet/1,280 Gigabit Ethernet ports in a standard 7-foot-rack.

The NetIron XMR Series is designed from the ground up for high performance and scalability to address the needs of the most demanding ISP, Internet data center, metro service provider, and multi-service operator applications. All routers in the series feature wire-speed, low latency, and low jitter routing for IPv4, IPv6, MPLS, and MPLS VPN services, and they support both edge and core service provider deployments. For metropolitan area networks (MANs), the NetIron XMR Series is capable of wire-speed, low latency, and low jitter Layer 2 switching to allow for cost-efficient and seamless integration with Layer 2 MANs or Layer 2 MAN access layers without compromising performance.

Designed for high-end routing applications, the NetIron XMR Series features Foundry Direct Routing (FDR) technology for full Forwarding Information Base (FIB) programming in hardware, together with hardware-based wire-speed access control lists (ACLs) and policy-based routing (PBR) for robust, high performance IPv4, IPv6, and Layer 3 VPN routing. Complementary to FDR is a full suite of unicast and multicast routing protocols for both IPv4 and IPv6. Supported IPv4 protocols include RIP, OSPF, IS-IS, BGP4, PIM-DM, PIM-SM, IGMP, BGP-MP for multicast, and MSDP. Supported IPv6 protocols include RIPng, OSPFv3, BGP-MP for IPv6 (BGP4+), PIM-SSM, and MLD. Building on this solid routing architecture, the NetIron XMR routers also provide dual-stack IPv4/IPv6 wire-speed routing to facilitate a seamless migration to IPv6 without sacrificing performance.

A comprehensive set of path calculation and signaling capabilities using OSPF-TE, RSVP-TE, CSPF, and LDP allows the creation of both traffic engineered as well as non-traffic engineered infrastructures. Within either infrastructure, the NetIron XMR Series supports IP over MPLS as well as MPLS VPN applications. The NetIron XMR Series supports all three popular MPLS VPN services, Virtual Leased Line (VLL), LDP-Based Virtual Private LAN Service (VPLS), and BGP/MPLS VPN as per RFC 2547bis, on all ports at wire-speed.

In addition, the NetIron XMR Series offers Multi-VRF Routing for environments where virtual routing is needed without the complexity of MPLS. Using Multi-VRF Routing, backbone operators can create multiple routing protocol instances that peer with each other in completely virtualized domains while sharing the same physical routers and links. The NetIron XMR Series architecture ensures complete separation of the routing tables, which allows for supporting overlapping IP address spaces. Forwarding plane separation is supported through the use of standard 802.1Q VLAN tags.

The NetIron XMR Series is also designed for enabling the evolving multi-service and triple-play infrastructures. Built with an innovative view of Virtual Output Queuing (VOQ) architectures, packet buffering, and packet scheduling, the NetIron XMR routers offer non-blocking packet forwarding and large capabilities for handling severe congestion scenarios. Built on that superior foundation, the NetIron XMR routers deliver a comprehensive suite of QoS mechanisms to enable next-generation architectures. Using the NetIron XMR routers, operators can implement 8 distinct traffic classes of prioritization with true performance guarantees. Operators can implement those performance guarantees through the NetIron XMR by choosing from different packet scheduling schemes and tweaking the associated configurable parameters. In addition, operators can take advantage of Weighted Random Early Discard (WRED), for differentiated packet dropping in case of congestion within a given traffic class, by relying on DSCP Drop Precedence.

With security an increasing concern for today’s operators, the NetIron XMR routers offer a powerful set of security mechanisms that allow operators to enhance both infrastructure security and subscriber security. Featuring highly scalable inbound and outbound ACLs, operators can implement security policies for IPv4 and IPv6, as well as Layer 2 through the NetIron XMR Series. These policies can be applied permanently or on demand without impacting normal operations.
NETIRON XMR 4000, 8000, 16000, 32000
IPV4/IPV6/MPLS MULTI-SERVICE Routers

Receive ACLs further harden platform and infrastructure security, allowing operators to implement strict policies for controlling management traffic and control traffic. To counter IP address spoofing, used in many forms of DoS attacks, the NetIron XMR routers offer wire-speed Unicast Reverse Path Forwarding (uRPF) for both edge applications (strict mode), and backbone applications (loose mode). The NetIron XMR’s uRPF is completely hardware driven, and it allows the routers to check the packet’s source IP address against the routing table to ensure that the packet came from a valid (and expected) source network.

To enable long-haul transport, the NetIron XMR Series optics support distances of up to 80 km for 10 Gigabit Ethernet and up to 150 km for Gigabit Ethernet. In addition, the NetIron XMR Series allows operators to connect to existing SONET/SDH OC-192/STM-64 infrastructures through 10 Gigabit Ethernet WAN PHY, which allows for cost-efficient transport up to thousands of kilometers away.

Key Features
- Service provider-grade IPv4/IPv6/MPLS multi-service routers
- 4-, 8-, 16-, and 32-slot systems (4, 7, 14, 21 RU) for maximum deployment versatility
- Terabit-scale architecture designed for 10 Gigabit Ethernet and beyond
- Performance of competitor multi-chassis routers in a fraction of the rack space
 - Up to 2 billion pps routing performance with non-blocking 3 Tbps data capacity
- Industry-leading port capacity and density with up to 128 10 Gigabit Ethernet/640 Gigabit Ethernet ports per system, and up to 256 10 Gigabit Ethernet/1,280 Gigabit Ethernet ports in a standard 7foot rack
- Wire-speed dual stack IPv4/IPv6 routing
- Wire-speed edge (PE) and core (P) Label Switching Routers
- Industry-leading performance for MPLS services providing concurrent IP over MPLS, Virtual Leased Lines (VLLs), Virtual Private LAN Services (VPLSes), and BGP/MPLS VPNs at wire-speed
- High-performance, robust routing via Foundry Direct Routing (FDR) for complete programming of the Forwarding Information Base (FIB) in hardware
- Full suite of unicast and multicast IPv4 and IPv6 routing protocols
 - Supported IPv4 protocols include RIP, OSPF, BGP-4, IS-IS, PIM-DM, PIM-SM, IGMP, BGP-MP for multicast, and MSDP
 - Supported IPv6 protocols include RIPng, OSPFv3, BGP-MP for IPv6 (BGP4+), PIM-SSM, and MLD
- Comprehensive MPLS signaling and path calculation algorithms for both traffic engineered and non-traffic engineered applications
 - OSPF-TE, RSVP-TE, CSPF
 - LDP
NETIRON XMR 4000, 8000, 16000, 32000
IPV4/IPV6/MPLS MULTI-SERVICE ROUTERS

- Powerful Multi-VRF Routing supports virtual routing applications over non-MPLS backbones
- Industry-leading scalability
 - 10 million BGP routes and up to 500 BGP peers
 - 1 million IPv4 routes in hardware (FIB)
 - 240,000 IPv6 routes in hardware (FIB)
 - 2,000 BGP/MPLS VPNs and up to 1 million VPN routes
 - 16,000 VLLs/VPLSes and up to 1 million VPLS MAC addresses
 - 4,094 VLANs and up to 2 million MAC addresses
- Superior high-availability design
 - Redundant management modules
 - Redundant switch fabrics
 - Redundant power supplies and cooling system
 - Hitless Layer 3 and Layer 2 failover for non-stop forwarding
 - Hitless (in-service) software upgrades
- Advanced QoS
 - 8 distinct priority levels
 - Weighted Random Early Discard (WRED) support for congestion management and precedence dropping (tunable via configuration)
 - Support for hybrid queue servicing disciplines: Strict Priority + Weighted Fair Queuing
- State-of-the-art policy enforcement and monitoring for enforcing SLAs and implementing security policies
 - Two rate three color traffic policers
 - Traffic policer accounting
 - Layer 3 and Layer 2 ACLs
 - Granular ACL accounting
 - Hardware-based packet filtering
 - Hardware-based policy based routing (PBR)
 - Unicast Reverse Path Forwarding (uRPF)
 - Receive ACLs
 - Extensive sFlow Layer 2-7 traffic monitoring for IPv4, IPv6 and MPLS services
- 10 Gigabit Ethernet WAN PHY support for cost-efficient SONET/SDH connectivity
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Interface slots</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
</tr>
<tr>
<td>Switch fabric capacity</td>
<td>960 Gbps</td>
<td>1.92 Tbps</td>
<td>3.84 Tbps</td>
<td>7.68 Tbps</td>
</tr>
<tr>
<td>System data switching capacity</td>
<td>384 Gbps</td>
<td>768 Gbps</td>
<td>1.54 Tbps</td>
<td>3.08 Tbps</td>
</tr>
<tr>
<td>Data switching capacity per 7'-foot-rack</td>
<td>3.84 Tbps</td>
<td>4.6 Tbps</td>
<td>4.6 Tbps</td>
<td>6.16 Tbps</td>
</tr>
<tr>
<td>Packet routing performance per system</td>
<td>240 million pps</td>
<td>480 million pps</td>
<td>960 million pps</td>
<td>2 billion pps</td>
</tr>
<tr>
<td>Packet routing performance per 7'-foot-rack</td>
<td>2.4 billion pps</td>
<td>2.88 billion pps</td>
<td>2.88 billion pps</td>
<td>4 billion pps</td>
</tr>
<tr>
<td>Switch fabric redundancy</td>
<td>2+1</td>
<td>2+1</td>
<td>3+1</td>
<td>7+1</td>
</tr>
<tr>
<td>Max 10-GbE ports per system</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
</tr>
<tr>
<td>Max 10-GbE ports per 7'-foot-rack</td>
<td>176</td>
<td>192</td>
<td>192</td>
<td>256</td>
</tr>
<tr>
<td>Max 1-GbE ports per system</td>
<td>80</td>
<td>160</td>
<td>320</td>
<td>640</td>
</tr>
<tr>
<td>Max 1-GbE ports per 7'-foot-rack</td>
<td>880</td>
<td>960</td>
<td>960</td>
<td>1,280</td>
</tr>
<tr>
<td>Height (inches/rack units)</td>
<td>6.96" / 4 RU</td>
<td>12.21" / 7 RU</td>
<td>24.47" / 14 RU</td>
<td>36.75" / 21 RU</td>
</tr>
<tr>
<td>Power supply redundancy</td>
<td>1+1, 1+2</td>
<td>N+1, 1+1</td>
<td>N+1, 1+1</td>
<td>N+1, 1+1</td>
</tr>
<tr>
<td>Air flow</td>
<td>Side to side</td>
<td>Side to side</td>
<td>Front to back</td>
<td>Side to side</td>
</tr>
</tbody>
</table>
Technical Specifications

IEEE Compliance

- 802.3ae 10 Gigabit Ethernet
- 802.3x Flow Control
- 802.3ad Link Aggregation
- 802.1Q VLAN Tagging
- 802.1D Bridging
- 802.1w Rapid STP
- 802.3 Ethernet Like MIB
- Ethernet Interface MIB
- SNMP v1, v2c and V3
- SNMP MIB II
- RFC 2966 Domain-wide Prefix Distribution

RIP

- RFC 1058 RIP v1
- RFC 1723 RIP v2
- RFC 1812 RIP Requirements

IP Multicast

- RFC 1122 Host Extensions
- RFC 1112 IGMP
- RFC 2236 IGMP v2
- PIM-DM v1
- RFC 2362 PIM-SM
- RFC 2858 BGP-MS
- RFC 3618 MSDP
- RFC 3446 Anycast RP

BGPv4

- RFC 1771 BGPv4
- RFC 1745 OSPF Interactions
- RFC 1997 Communities & Attributes
- RFC 2439 route flap dampening
- RFC 2796 route reflection
- RFC 1965 BGP4 confederations
- RFC 2842 Capability Advertisement
- RFC 2918 Route Refresh Capability
- RFC 1269 Managed Objects for BGP
- RFC 2385 BGP Session Protection via TCP MD5
- RFC 3682 Generalized TTL Security Mechanism, for eBGP Session Protection
- draft-ietf-idr-restart Graceful Restart Mechanism for BGP

OSPF

- RFC 2178 OSPF
- RFC 1583 OSPF v2
- RFC 1587 OSPF NSSA
- RFC 1745 OSPF Interactions
- RFC 1765 OSPF Database Overflow
- RFC 1850 OSPF Traps
- RFC 2154 OSPF w/Digital Signatures (Password, MD-5)
- RFC 2328 OSPF v2
- RFC 1850 OSPF v2 MIB
- RFC 2370 OSPF opaque LSA Option
- RFC 3630 TE Extensions to OSPF v2
- RFC 3623 Graceful OSPF Restart

IS-IS

- RFC 1195 Routing in TCP/IP and Dual Environments
- RFC 2763 Dynamic Host Name Exchange

IS-IS

- RFC 3315 IS-IS in TCP/IP and Dual Environments
- RFC 2763 Dynamic DNS Name Exchange

IPv6 Core

- RFC 2460 IPv6 Specification
- RFC 2461 IPv6 Neighbor Discovery

General Protocols

- RFC 791 IP
- RFC 792 ICMP
- RFC 793 TCP
- RFC 768 UDP
- RFC 894 IP over Ethernet
- RFC 903 RARP
- RFC 906 TFTP Bootstrap
- RFC 1027 Proxy ARP
- RFC 951 BootP
- RFC 1122 Host Requirements
- RFC 1256 IRDP
- RFC 1519 CIDR
- RFC 1542 BootP Extensions
- RFC 1912 General Routing
- RFC 1541 and 1542 DHCP
- RFC 2131 BootP/DHCP Helper
- RFC 2338 VRRP
- RFC 854 Telnet
- RFC 1591 DNS (client)

Other

- RFC 1354 IP Forwarding MIB
- RFC 1757 RMON Groups 1, 2, 3, 9
- RFC 2068 HTTP
- RFC 2030 SMTP
- RFC 2138 RADIUS
- RFC 3176 sFlow
- Draft-ietf-tcpm-tcpsecure TCP Security

IPv6 Core

- RFC 2460 IPv6 Specification
- RFC 2461 IPv6 Neighbor Discovery
NETIRON XMR 4000, 8000, 16000, 32000

IPV4/IPV6/MPLS MULTI-SERVICE ROUTERS

- RFC 2462 IPv6 Stateless Address Auto-configuration
- RFC 2463 ICMPv6
- RFC 3513 IPv6 Addressing Architecture
- RFC 1981 IPv6 Path MTU Discovery
- RFC 3587 IPv6 Global Unicast Address Format
- RFC 2375 IPv6 Multicast Address Assignments
- RFC 2464 Transmission of IPv6 over Ethernet Networks
- RFC 2711 IPv6 Router Alert Option
- RFC 3596 DNS support

IPv6 Routing

- RFC 2080 RIPng for IPv6
- RFC 2740 OSPFv3 for IPv6
- RFC 2545 Use of BGP-MP for IPv6

IPv6 Multicast

- RFC 2710 Multicast Listener Discovery (MLD) for IPv6
- IETF Draft-vida-mld-v2 Multicast Listener Discovery Version 2 for IPv6
- draft-holbrook-idmr-igmpv3-ssm IGMPv3 & MLDv2 for SSM
- draft-ietf-ssm-arch SSM for IP

IPv6 Transitioning

- RFC 2893 Transition Mechanisms for IPv6 Hosts and Routers

MPLS

- RFC 3031 MPLS Architecture
- RFC 3032 MPLS Label Stack Encoding
- RFC 3036 LDP Specification
- RFC 2205 RSVP v1 Functional Specification
- RFC 2209 RSVP v1 Message Processing Rules
- RFC 3209 RSVP-TE
- RFC 3270 MPLS Support of Differentiated Services

L3VPN

- RFC 2858 Multiprotocol Extensions for BGP-4
- RFC 3107 Carrying Label Information in BGP-4
- draft-ietf-l3vpn-rtcg2547bis BGP/MPLS IP VPNs
- draft-ietf-idr-bgp-extend-communities BGP Extended Communities Attribute
- draft-ietf-l3vpn-ospf-2547 OSPF as the PE/CE Protocol in BGP/MPLS IP VPNs
- draft-ietf-idr-route-filter Cooperative Route Filtering Capability for BGP-4
- draft-ietf-l3vpn-mpls-VPN-mib MPLS/BGP Layer 3 VPN MIB

L2VPN and PWE3

- draft-ietf-l2vpn-l2-framework Framework for Layer 2 Virtual Private Networks
- draft-ietf-l2vpn-requirements Service Requirements for Layer 2 Provider Provisioned Virtual Private Networks
- draft-ietf-l2vpn-vpls-ldp Virtual Private LAN Services over MPLS
- draft-ietf-pwe3-arch PWE3 Architecture
- draft-ietf-pwe3-ethernet-encapsulation Encapsulation Methods for Transport of Ethernet Frames Over IP/MPLS Networks
- draft-ietf-pwe3-control-protocol Pseudowire Setup and Maintenance using LDP
- draft-ietf-pwe3-pw-tc-mib Definitions for Textual Conventions and OBJECT-IDENTITIES for Pseudo-Wires Management
- draft-ietf-pwe3-pw-mib Pseudo Wire (PW) Management Information Base

Network Management

- IronView Network Manager (INM) Web-based graphical user interface
- Standard-based Command Line Interface (CLI)
- sFlow (RFC 3176)
- Telnet
- SNMP
- RMON
- HP OpenView for Sun Solaris, HP-UX, IBM AIX, and Windows NT

Element Security Options

- AAA
- RADIUS
- Secure Shell (SSH v2)
- Secure Copy (SCP v2)
- HTTPs
- TACACS/TACACS+
- Username/Password (Challenge and Response)
- Bi-level Access Mode (Standard and EXEC Level)
- Protection for Denial of Service attacks, such as TCP SYN or Smurf Attacks

Environmental

- Operating Temperature: 0 °C to 40 °C (32 °F to 104 °F)
NETIRON XMR 4000, 8000, 16000, 32000
IPV4/IPV6/MPLS MULTI-SERVICE ROUTERS

- Relative Humidity: 5 to 90%, @40 °C (104 °F), non-condensing
- Operating Altitude: 10,000 ft (3,000 m)
- Storage Temperature: -25 °C to 70 °C (-13 °F to 158 °F)
- Storage Humidity: 95% maximum relative humidity, non-condensing
- Storage Altitude: 15,000 ft (4,500 m) maximum
NetIron XMR 4000, 8000, 16000, 32000
IPv4/IPv6/MPLS Multi-Service Routers

NetIron XMR Series Power Specifications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum DC Power Consumption (W)</td>
<td>1,384</td>
<td>2,750</td>
<td>5,572</td>
<td>10,622</td>
</tr>
<tr>
<td>Maximum AC Power Consumption (W) [100 - 240 VAC]</td>
<td>1,384</td>
<td>2,750</td>
<td>5,572</td>
<td>10,622</td>
</tr>
<tr>
<td>Maximum Thermal Output (BTU/HR)</td>
<td>4,724</td>
<td>9,386</td>
<td>19,017</td>
<td>36,252</td>
</tr>
</tbody>
</table>

NetIron XMR Series Physical Specifications

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>17.45”w x 6.96”h x 22.5”d 44.32w x 17.68h x 57.15d cm</td>
<td>17.45”w x 12.21”h x 22.5”d 44.32w x 31.01h x 57.15d cm</td>
<td>17.45”w x 24.47”h x 25.5”d 44.32w x 62.15h x 64.77d cm</td>
<td>17.45”w x 36.75”h x 24.1”d 44.32w x 93.55h x 61.21d cm</td>
</tr>
<tr>
<td>Weight (Fully loaded)</td>
<td>78 lbs 35 kg</td>
<td>131 lbs 60 kg</td>
<td>236 lbs 107 kg</td>
<td>approx 300 lbs approx 136 kg</td>
</tr>
</tbody>
</table>
Ordering Information

<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NI-XMR-4-AC</td>
<td>4-slot NetIron XMR 4000 AC system</td>
</tr>
<tr>
<td>NI-XMR-8-AC</td>
<td>8-slot NetIron XMR 8000 AC system</td>
</tr>
<tr>
<td>NI-XMR-16-AC</td>
<td>16-slot NetIron XMR 16000 AC system</td>
</tr>
<tr>
<td>NI-XMR-4-DC</td>
<td>4-slot NetIron XMR 4000 DC system</td>
</tr>
<tr>
<td>NI-XMR-8-DC</td>
<td>8-slot NetIron XMR 8000 DC system</td>
</tr>
<tr>
<td>NI-XMR-16-DC</td>
<td>16-slot NetIron XMR 16000 DC system</td>
</tr>
<tr>
<td>NI-X-SF3</td>
<td>NetIron XMR 8-/16-slot system switch fabric module</td>
</tr>
<tr>
<td>NI-X-SF1</td>
<td>NetIron XMR 4-slot system switch fabric module</td>
</tr>
<tr>
<td>NI-XMR-10Gx4</td>
<td>NetIron XMR Series 4-port 10-GbE module with IPv4/IPv6/MPLS hardware support - requires XFP optics</td>
</tr>
<tr>
<td>NI-XMR-10Gx2</td>
<td>NetIron XMR Series 2-port 10-GbE module with IPv4/IPv6/MPLS hardware support - requires XFP optics</td>
</tr>
<tr>
<td>NI-XMR-1Gx20-SFP</td>
<td>NetIron XMR Series 20-port FE/GE (100/1000) module with IPv4/IPv6/MPLS hardware support - requires SFP optics</td>
</tr>
<tr>
<td>NI-XMR-1Gx20-GC</td>
<td>NetIron XMR Series 20-port 10/100/1000 copper module with IPv4/IPv6/MPLS hardware support</td>
</tr>
<tr>
<td>NI-X-ACPWR</td>
<td>NetIron XMR 8-/16-slot system AC power supply, 1200W</td>
</tr>
<tr>
<td>NI-X-ACPWR-A</td>
<td>NetIron XMR 4-slot system AC power supply, 1200W</td>
</tr>
<tr>
<td>NI-X-DCPWR</td>
<td>NetIron XMR 8-/16-slot system DC power supply, 1200W</td>
</tr>
<tr>
<td>NI-X-DCPWR-A</td>
<td>NetIron XMR 4-slot system DC power supply, 1200W</td>
</tr>
</tbody>
</table>

Note: NetIron XMR 32000 available July 2006

Although Foundry has attempted to provide accurate information in these materials, Foundry assumes no legal responsibility for the accuracy or completeness of the information. More specific information is available on request from Foundry. Please note that Foundry’s product information does not constitute or contain any guarantee, warranty or legally binding representation, unless expressly identified as such in a duly signed writing.

©2006 Foundry Networks, Inc. All Rights Reserved. Foundry Networks, BigIron, NetIron, IronShield, IronView, IronWare, JetCore, JetScope, MetroLink, Terathon, TrafficWorks, Power of Performance and the ‘Iron’ family of marks are trademarks or registered trademarks of Foundry Networks, Inc. in the United States and other countries. sFlow is a registered trademark of InMon Corporation. All others are trademarks of their respective owners.

Foundry Networks, Inc.
Headquarters
2100 Gold Street
P.O. Box 649100
San Jose, CA 95164-9100

U.S. and Canada Toll-free: (888) TURBOLAN
Direct telephone: +1 408.586.1700
Fax: +1 408.586.1900
Email: info@foundrynet.com
www.foundrynetworks.com